915 research outputs found

    Transport properties of a two impurity system: a theoretical approach

    Full text link
    A system of two interacting cobalt atoms, at varying distances, was studied in a recent scanning tunneling microscope experiment by Bork et. al.[Nature Phys. 7, 901 (2011)]. We propose a microscopic model that explains, for all experimentally analyzed interatomic distances, the physics observed in these experiments. Our proposal is based on the two-impurity Anderson model, with the inclusion of a two-path geometry for charge transport. This many-body system is treated in the finite-U slave boson mean-field approximation and the logarithmic-discretization embedded-cluster approximation. We physically characterize the different charge transport regimes of this system at various interatomic distances and show that, as in the experiments, the features observed in the transport properties depend on the presence of two impurities but also on the existence of two conducting channels for electron transport. We interpret the splitting observed in the conductance as the result of the hybridization of the two Kondo resonances associated with each impurity.Comment: 5 pages, 5 figure

    Polarized currents and spatial separation of Kondo state: NRG study of spin-orbital effect in a double QD

    Full text link
    A double quantum dot device, connected to two channels that only see each other through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. By using a two-impurity Anderson model, and parameter values obtained from experiment [S. Amasha {\it et al.}, Phys. Rev. Lett. {\bf 110}, 046604 (2013)], it is shown that, by applying a moderate magnetic field, and adjusting the gate potential of each quantum dot, opposing spin polarizations are created in each channel. Furthermore, through a well defined change in the gate potentials, the polarizations can be reversed. This polarization effect is clearly associated to a spin-orbital Kondo state having a Kondo peak that originates from spatially separated parts of the device. This fact opens the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.Comment: 4+ pages; 4 figures; supplemental material (1 page, 2 figures

    An Exploratory Study of Forces and Frictions affecting Large-Scale Model-Driven Development

    Full text link
    In this paper, we investigate model-driven engineering, reporting on an exploratory case-study conducted at a large automotive company. The study consisted of interviews with 20 engineers and managers working in different roles. We found that, in the context of a large organization, contextual forces dominate the cognitive issues of using model-driven technology. The four forces we identified that are likely independent of the particular abstractions chosen as the basis of software development are the need for diffing in software product lines, the needs for problem-specific languages and types, the need for live modeling in exploratory activities, and the need for point-to-point traceability between artifacts. We also identified triggers of accidental complexity, which we refer to as points of friction introduced by languages and tools. Examples of the friction points identified are insufficient support for model diffing, point-to-point traceability, and model changes at runtime.Comment: To appear in proceedings of MODELS 2012, LNCS Springe

    Transport properties of strongly correlated electrons in quantum dots using a simple circuit model

    Full text link
    Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in nanostructures (N. J. Craig et al., Science 304, 565 (2004)). In particular, the splitting of the zero-bias-peak discovered experimentally is clearly observed in our studies. To understand these results, a simple "circuit model" is introduced and shown to provide a good qualitative description of the experiments. The main idea is that the splitting originates in a Fano anti-resonance, which is caused by having one quantum dot side-connected in relation to the current's path. This scenario provides an explanation of Craig et al.'s results that is alternative to the RKKY proposal, which is here also addressed.Comment: 5 pages, 5 figure

    Transport through quantum dots: A combined DMRG and cluster-embedding study

    Full text link
    The numerical analysis of strongly interacting nanostructures requires powerful techniques. Recently developed methods, such as the time-dependent density matrix renormalization group (tDMRG) approach or the embedded-cluster approximation (ECA), rely on the numerical solution of clusters of finite size. For the interpretation of numerical results, it is therefore crucial to understand finite-size effects in detail. In this work, we present a careful finite-size analysis for the examples of one quantum dot, as well as three serially connected quantum dots. Depending on odd-even effects, physically quite different results may emerge from clusters that do not differ much in their size. We provide a solution to a recent controversy over results obtained with ECA for three quantum dots. In particular, using the optimum clusters discussed in this paper, the parameter range in which ECA can reliably be applied is increased, as we show for the case of three quantum dots. As a practical procedure, we propose that a comparison of results for static quantities against those of quasi-exact methods, such as the ground-state density matrix renormalization group (DMRG) method or exact diagonalization, serves to identify the optimum cluster type. In the examples studied here, we find that to observe signatures of the Kondo effect in finite systems, the best clusters involving dots and leads must have a total z-component of the spin equal to zero.Comment: 16 pages, 14 figures, revised version to appear in Eur. Phys. J. B, additional reference

    Kondo effect under the influence of spin–orbit coupling in a quantum wire

    Get PDF
    The analysis of the impact of spin–orbit coupling (SOC) on the Kondo state has generated considerable controversy, mainly regarding the dependence of the Kondo temperature T K on SOC strength. Here, we study the one-dimensional (1D) single impurity Anderson model (SIAM) subjected to Rashba (α) and Dresselhaus (β) SOC. It is shown that, due to time-reversal symmetry, the hybridization function between impurity and quantum wire is diagonal and spin independent (as it is the case for the zero-SOC SIAM), thus the finite-SOC SIAM has a Kondo ground state similar to that for the zero-SOC SIAM. This similarity allows the use of the Haldane expression for T K, with parameters renormalized by SOC, which are calculated through a physically motivated change of basis. Analytic results for the parameters of the SOC-renormalized Haldane expression are obtained, facilitating the analysis of the SOC effect over T K. It is found that SOC acting in the quantum wire exponentially decreases T K while SOC at the impurity exponentially increases it. These analytical results are fully supported by calculations using the numerical renormalization group (NRG), applied to the wide-band regime, and the projector operator approach, applied to the infinite-U regime. Literature results, using quantum Monte Carlo, for a system with Fermi energy near the bottom of the band, are qualitatively reproduced, using NRG. In addition, it is shown that the 1D SOC SIAM for arbitrary α and β displays a persistent spin helix SU(2) symmetry similar to the one for a 2D Fermi sea with the restriction α = β.VL acknowledges a PhD scholarship from the Brazilian Agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), process 160071/2015-1, and financial support from the Generalitat Valenciana through Grant reference Prometeo 2017/139. MM acknowledges a PhD scholarship from the Brazilian Agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). GBM acknowledges financial support from CNPq, processes 424711/2018-4 and 305150/2017-0. EVA acknowledges financial support from CNPq, process 306000/2017-2

    Characterization of Poly(A)-Protein Complexes Isolated from Free and Membrane-Bound Polyribosomes of Ehrlich Ascites Tumor Cells

    Get PDF
    Proteins present in messenger ribonucleoprotein particles were labeled with [35S]-methionine in Ehrlich ascites tumor cells in which synthesis of new ribosomes was inhibited. Poly(A)-protein complexes were isolated from free and membrane-bound polyribosomes by sucrose gradient centrifugation and affinity chromatography on oligo(dT)-cellulose. Both classes of Poly(A)-protein particles contain a poly(A) chain of about 70 adenyl residues and a protein with a molecular weight of 76000 attached to it

    Kondo regime in triangular arrangements of quantum dots: Molecular orbitals, interference and contact effects

    Full text link
    Transport properties of an interacting triple quantum dot system coupled to three leads in a triangular geometry has been studied in the Kondo regime. Applying mean-field finite-U slave boson and embedded cluster approximations to the calculation of transport properties unveils a set of rich features associated to the high symmetry of this system. Results using both calculation techniques yield excellent overall agreement and provide additional insights into the physical behavior of this interesting geometry. In the case when just two current leads are connected to the three-dot system, interference effects between degenerate molecular orbitals are found to strongly affect the overall conductance. An S=1 Kondo effect is also shown to appear for the perfect equilateral triangle symmetry. The introduction of a third current lead results in an `amplitude leakage' phenomenon, akin to that appearing in beam splitters, which alters the interference effects and the overall conductance through the system.Comment: 14 pages, 9 figures, submitted to PR
    • …
    corecore